Transport Properties of SAM Molecular Diodes with Structural Tunability1 VLADIMIR BURTMAN, VALY Z. VARDENY, ALEX NDOBE, University of Utah — A new molecular engineering approach is used to fabricate molecular junctions from self-assembled-monolayers (SAM) sandwiched between gold electrodes, with structural tunability based on two-component solid-state mixtures of molecular wires (1,4 methane benzene-dithiol; Me-BDT, and molecular insulator spacers (1-pentanethiol; PT). The electrical transport of the fabricated SAM diodes was investigated at various temperatures versus the ratio r between the molecular wires and insulators. At $r < 10^{-3}$ the diodes are dominated by the isolated molecular wires dispersed in the dielectric spacer matrix; from the conductivity vs. r we determined the value for the Me-BDT molecular resistance to be 4×10^8 Ohm. We also found that the activation energy in these devices is \(~50\text{ meV}\) at low bias and high temperatures; and injection barrier of \(~1.5\text{ eV}\) at intermediate bias and low temperatures. At $r > 10^{-3}$ Me-BDT aggregates are formed in the PT matrix resulting in additional in-plane order and substantive changes in the transport properties.

1This work was supported in part by the NSF NER 0507952, and DOE Grant No. ER 46109 at the University of Utah

Vladimir Burtman
University of Utah

Date submitted: 29 Dec 2005

Electronic form version 1.4