A Phenomenological Model of the Effect of Magnetic Nanoparticles and Their Surface Coating on Smectic - A Liquid Crystal Order

LUZ J. MARTINEZ-MIRANDA, University of Maryland, College Park, MD, LYNN K. KURIHARA, Naval Research Laboratory, Washington, DC, KEVIN MCDONALD, University of Maryland, College Park, MD, JASON HARRY, Xavier University, New Orleans, LA, ALEXIS NOEL, Morgan State University, Baltimore, MD — We studied the interaction of a smectic-A liquid crystal with magnetic nanoparticles. The behavior of smectic-A liquid crystals with magnetic particles has not been very well characterized, especially where it concerns the effect of the particles’ surface coating. The effect of this termination compound on the effect the nanoparticles have on liquid crystals, smectic or nematic, has not been systematically or consistently characterized. The surface coating is needed to ensure that the particles and the smectic liquid crystals do not phase separate. The surface coating in a nanoparticle is used in biological applications to identify a particular cell. We have found out that depending on the surface coating the interaction of the nanoparticles with the liquid crystal varies. This variation is related with how the surface coating aligns the liquid crystal and how it contributes to the concentration of the nanoparticles in the liquid crystal-nanoparticle mixture. This work was partially supported by NSF grant No. NSF-DMR-0080008.

Luz J. Martinez-Miranda
University of Maryland, College Park, MD

Date submitted: 17 Nov 2005
Electronic form version 1.4