Poisson-bracket formulation of the dynamics of polar liquid crystals1 WILLIAM KUNG, M. CRISTINA MARCHETTI, Syracuse University, KARL SAUNDERS, California Polytechnic State University — We develop the dynamical theory of polar liquid crystals with local C_∞-symmetry using the general Poisson-bracket formalism. We obtain dynamical equations for the slow macroscopic fields that govern the dynamics in both the polarized and the isotropic phases. Starting from a microscopic definition of an alignment vector proportional to the polarization, we obtain Poisson bracket relations for the director field. The hydrodynamic equations differ from those of nematic liquid crystals (D_∞) in that they contain terms violating the $\mathbf{n} \rightarrow -\mathbf{n}$ symmetry. We find that the \mathbb{Z}_2-odd terms induce a general splay instability of a uniform polarized state in a range of parameters.

1Work supported by NSF grants DMR-0305407 and DMR-0219292.