Abstract Submitted for the MAR06 Meeting of The American Physical Society

Thermal Chemistry of N_2 , CO_2 , and CH_4 on Cesiated Pt(111) KRISTY DEWITT, LETICIA VALADEZ, IAN HARRISON, Department of Chemistry, University of Virginia, Charlottesville, VA 22904, MERRICK DEWITT, SPARTA, Inc., 1911 N. Fort Myer Drive, Suite 1100, Arlington, VA, USA 22209 — Promoting transition metal surfaces with alkali metals is known to drastically reduce the surface work function. We have investigated the effect of Cs promotion on the thermal chemistry of CH₄, N₂ and CO₂ using temperature programmed desorption (TPD). At low Cs coverage the CH_4TPD peak broadens and shifts to higher temperature. As the Cs coverage increases further three CH_4 peaks develop: one at higher temperature than on a bare Pt surface, and two at lower temperatures. With Cs coverage of one saturation monolayer ($\theta_{sat} = 0.41 \text{ ML}$) or more only the lowest temperature peak remains. CH_4 sticking also varies as a function of Cs coverage. N_2 displays similar behavior to CH_4 in response to coadsorption of Cs, but does not stick to Cs multilayers. CO_2 exhibits very unusual behavior as a function of Cs coverage. At low Cs coverage the physisorbed CO_2 peak broadens, then splits into a doublet, with one peak at higher temperature than the "normal" CO_2 peak, and the other at lower temperature. With increasing Cs coverage CO_2 begins to dissociate, evidenced by high temperature recombinative desorption and the presence of chemisorbed CO. As the Cs coverage approaches θ_{sat} the physisorbed peak disappears entirely, and only dissociative chemisorption is seen.

> Kristy DeWitt University of Virginia

Date submitted: 18 Nov 2005

Electronic form version 1.4