Abstract Submitted for the MAR06 Meeting of The American Physical Society

Experimental and Theoretical Investigation of the Electronic **Spectroscopy of H₂CN** PAUL J. DAGDIGIAN, Johns Hopkins University, ALEXEY TESLJA¹, Columbia University, MICHAEL BANCK, WOLFGANG EIS-FELD, Technische Universität M—"unchen — The electronic spectrum of H₂CN, recorded through cavity ring-down spectroscopy, is reported. The radical was prepared by 193 nm photolysis of monomeric formaldoxime vapor. Two diffuse features are observed in the 34800-35800 cm⁻¹ spectral range, along with the A - X (1,0) band of the OH co-fragment. These are assigned as vibronic transitions to the ground and $2b_1$ (umbrella mode) levels of the second excited, 2A_1 state from the ground ${}^{2}B_{2}$ state. Experimental and simulated rotational profiles of these bands agree extremely well with each other for an assumed type-B electric-dipole allowed ${}^{2}A_{1}$ \leftarrow ²B₂ transition appropriate to this transition. A theoretical investigation of the dissociation pathways for electronically excited H₂CN is also presented. The upper states of the observed bands cannot dissociated directly, but higher b_1 levels are above the excited-state dissociation limit.

¹formerly at Johns Hopkins University

Paul J. Dagdigian Johns Hopkins University

Date submitted: 21 Nov 2005

Electronic form version 1.4