Abstract Submitted for the MAR06 Meeting of The American Physical Society

Memory and aging effect in hierarchical spin orderings of stage-**2** CoCl₂ graphite intercalation compound MASATSUGU SUZUKI, ITSUKO SUZUKI, SUNY-Binghamton, MOTOHIRO MATSUURA, Fukui University of Technology — Stage-2 CoCl₂ graphite intercalation compound undergoes two magnetic phase transitions at T_{cl} (= 7.0 K) and T_{cu} (= 8.9 K). The aging dynamics of this compound is studied near T_{cl} and T_{cu} . The intermediate state between T_{cl} and T_{cu} is characterized by a spin glass phase extending over ferromagnetic islands. A genuine thermoremnant magnetization (TRM) measurement indicates that the memory of the specific spin configurations imprinted at temperatures between T_{cl} and T_{cu} during the field-cooled (FC) aging protocol can be recalled when the system is re-heated at a constant heating rate. The zero-field cooled (ZFC) and TRM magnetization is examined in a series of heating and reheating process. The magnetization shows both characteristic memory and rejuvenation effects. The time (t)dependence of the relaxation rate $S_{ZFC}(t) = (1/H) dM_{ZFC}(t)/d\ln t$ after the ZFC aging protocol with a wait time t_w , exhibits two peaks at characteristic times t_{cr1} and t_{cr2} between T_{cl} and T_{cu} . An aging process is revealed as the strong t_w dependence of t_{cr2} . The observed aging and memory effect is discussed in terms of the droplet model.

> Masatsugu Suzuki SUNY-Binghamton

Date submitted: 22 Nov 2005

Electronic form version 1.4