Abstract Submitted for the MAR06 Meeting of The American Physical Society

Variable (T_q, T_s) Measurements of Alkane Dissociative Sticking Coefficients LETICIA VALADEZ, KRISTY DEWITT, HEATHER ABBOTT, KURT KOLASINSKI, IAN HARRISION, Dept. of Chemistry, University of Virginia — Dissociative sticking coefficients $S(T_g, T_s)$ for CH₄ and C₂H₆ on Pt(111) have been measured as a function of gas temperature (T_q) and surface temperature (T_s) using an effusive molecular beam. Microcanonical unimolecular rate theory (MURT) was employed to extract transition state characteristics [e.g., $E_0(CH_4) = 52.5 \pm 3.5$ kJ/mol^{-1} and $E_0(C_2H_6) = 26.5 \pm 3 kJ/mol^{-1}$]. MURT allows our $S(T_q, T_s)$ values to be directly compared to other supersonic molecular beam and thermal equilibrium sticking measurements. The $S(T_g, T_s)$ depend strongly on T_s , however, only for CH_4 is a strong T_g dependence observed. The fairly weak T_g dependence for C_2H_6 suggests that vibrational mode specific behavior and/or molecular rotations play stronger roles in the dissociative chemisorption of C₂H₆ than they do for CH₄. Interestingly, thermal $S(T_g = T_s)$ predictions based on MURT modeling of our $CH_4/Pt(111)$ data are three orders of magnitude higher than recent thermal equilibrium measurements on supported Pt nanocrystallite catalysts [J. M. Wei, E. Iglesia, J. Phys. Chem. B **108**, 4094 (2004)].

> Leticia Valadez Dept. of Chemistry, University of Virginia

Date submitted: 22 Nov 2005

Electronic form version 1.4