Abstract Submitted for the MAR06 Meeting of The American Physical Society

Spectroscopic Identification of Multiple Conformers of o, p-H₂ · ...ICl and o, p-H₂...I₂ Complexes JOSHUA DARR, RICHARD LOOMIS, Department of Chemistry Washington University in St. Louis — Laser-induced fluorescence and action spectroscopy experiments have identified ro-vibronic transitions associated with multiple conformers of the $o, p-H_2 \cdots ICl(X, v=0)$ and $o, p-H_2 \cdots I_2(X, v=0)$ complexes. For each complex, the conformers with the hydrogen molecule localized at the end of the dihalogen, with a C_{2v} symmetry, are more stable than the conformers with the hydrogen molecule localized in the T-shaped well, which lies orthogonally about the dihalogen bond axis. Furthermore, the conformers containing $o-H_2(j=1)$ and $p-D_2(j=1)$ are found to be more strongly bound than those containing $p-H_2(j=0)$ and $o-D_2(j=0)$. The role of multi-pole electrostatic interactions is elucidated by comparing the binding energies of the $H_2 \cdots ICl(X,v=0)$ and $H_2 \cdots I_2(X,v=0)$ complexes with C_{2v} symmetries. The relative populations of the C_{2v} and T-shaped conformers can be altered by changing the properties of the supersonic expansion used to stabilize the complexes. The relative populations of the $o-H_2 \cdots ICl(X, v=0)$ and $p-H_2 \cdots ICl(X, v=0)$ conformers can also be manipulated, with a population ratio of 3:1 approached by decreasing the hydrogen concentration in helium.

> Richard Loomis Washington University in St. Louis

Date submitted: 22 Nov 2005

Electronic form version 1.4