Role of Interfaces and Effect of Impurities in Nitride-based Super-hard Nanocomposites

HAO SHIQIANG, The University of Sydney, BERNARD DELLEY, Paul-Scherrer-Institut, CATHERINE STAMPFL, The University of Sydney — Recently, a hardness similar to that of diamond has been reported for the ternary nitride-based nanocomposite, \(\text{nc-TiN/}\, a\text{-Si}_3\text{N}_4/\, a\)- and \(\text{nc-TiSi}_2\) [1]. The reproducibility, however, has proved difficult, as has the superhardness of the related, prototypical, binary nanocomposite \(\text{nc-TiN/}\, a\text{-Si}_3\text{N}_4\). Extensive density-functional theory calculations indicate that the hardness enhancement in the latter system is due to the preferential formation of TiN(111) polar interfaces with a thin Si-layer which is N-coordinated and tetrahedrally bonded [2]. The tensile strength of TiN in the [111] direction is very similar to the weakest bonding direction in diamond. Oxygen impurities cause a significant reduction of the interface strength which could partly explain the conflicting results, and signals the importance of avoiding such contaminants for achieving super- and ultra-hard nanocomposites.