Crystal Structure, Magnetism, and Infrared Reflectivity of Double Perovskites \(\text{Sr}_2\text{B} \text{UO}_6\) and \(\text{Sr}_2\text{B} \text{UO}_6-d\), \(\text{B}=\text{Mn, Fe, Co, Ni, Zn}\)

R.M. PINACCA, M. DEL C. VIOLA, J.C. PEDREGOSA, FQBF, UNSL, San Luis, Argentina, R.E. CARBONIO, INFIQC, UNC, Córdoba, Argentina, M.J. MARTINEZ-LOPE, J.A. ALONSO, ICMM, CSIC, Cantoblanco, Madrid, Spain, F.P. DE LA CRUZ, N.E. MASSA, LANAIS EFO-CEQUINOR, U.N.L.P., C. C. 962, (1900) La Plata, Argentina — Double perovskites \(\text{Sr}_2\text{B} \text{UO}_6\) where \(\text{B}'=\text{Mn, Fe, Co, Ni, Zn}\) have been prepared as a polycrystalline powder by solid-state reaction and studied by X-ray diffraction and magnetic measurements. At 300K, they present the same monoclinic distorted crystal structure, space group \(P2_1/n\). The perovskite lattice consists of a completely ordered array of \(\text{BO}_6\) and \(\text{UO}_6\) octahedra exhibiting a slight tilting of the type \(a^{-}b^{+}a^{-}\). Magnetic measurements show antiferromagnetism for the phases with \(\text{B}=\text{Co, Ni and Mn}\) at low temperature. The effective magnetic moment at \(T \geq T_{\text{Neel}}\) (5.22 B/f.u. for Co phase and 3.26 B/f.u. for Ni phase) suggests an unquenched orbital contribution. The value for the Mn phase (5.74 B/f.u.) is consistent with that expected for high-spin \(\text{Mn}^{2+}\) (5.91 B/f.u.). The topotactic reduction of the stoichiometric sample leads to oxygen deficient disordered perovskites, \(\text{SrB}_0.5\text{U}_0.5\text{O}_{3-d}\) having an orthorhombic distorted structure, space group \(Pbnm\), at 300K. We will also comment on the temperature dependent infrared reflectivity of \(\text{Sr}_2\text{CoUO}_6\) and isomorphous compounds.

Nestor E. Massa
LANAIS EFO-CEQUINOR, U.N.L.P.

Date submitted: 23 Nov 2005