Spontaneous Strains in the Ground State of the Frustrated Pyrochlore $\text{Tb}_2\text{Ti}_2\text{O}_7$ JACOB RUFF, KIRRILY RULE, PATRICK CLANCY, JOHN PAUL CASTELLAN, JOSE RODRIGUEZ, BRUCE GAULIN, McMaster University — The geometrically frustrated pyrochlore antiferromagnet $\text{Tb}_2\text{Ti}_2\text{O}_7$ has been the focus of much recent attention due to the spin liquid physics it displays at low temperatures. We have carried out high resolution x-ray scattering measurements of the principal Bragg peaks of $\text{Tb}_2\text{Ti}_2\text{O}_7$ which show substantial longitudinal broadening below approximately 20 K. Measurements on the non-magnetic pyrochlore $\text{Y}_2\text{Ti}_2\text{O}_7$ show no such broadening, suggesting this effect is driven by strong magnetoelastic coupling, as had been concluded from earlier anomalous low temperature Young’s modulus measurements [Mamsurova et.al, JETP Letters, 1986]. We compare our x-ray scattering results to similar measurements in $\text{TbVO}_4$, which undergoes a cooperative Jahn-Teller phase transition near 34 K, and conclude that the longitudinal broadening is due to cubic-tetragonal fluctuations near a zero temperature phase transition, which acts to relieve the magnetic frustration.

Jacob Ruff
McMaster University

Date submitted: 23 Nov 2005

Electronic form version 1.4