A Density Functional Study of Atomic Oxygen and Carbon Ad-
sorptions on the (100) Surface of γ-Uranium1 PRATIK DHOLABHAI, ASOK
RAY, University of Texas at Arlington — Atomic oxygen and carbon adsorptions on
the γ-U (100) surface have been studied using the generalized gradient approxima-
tion to density functional theory (GGA-DFT) with Perdew and Wang (PW) func-
tionals. Different chemisorption sites at both non-spin-polarized and spin-polarized
levels of theory have been thoroughly investigated. For O adsorption, the bridge po-
sition is the most favorable site with chemisorption energies of 7.887eV and 7.965eV
for the non-spin-polarized and spin-polarized cases, respectively. The distances of
the O adatom from the U surface are found to be 1.19Å and 1.22Å, respectively.
For C adsorption, the center position is the most favorable site with a chemisorption
energy of 7.816eV for the non-spin-polarized case, and 7.895eV for the spin-polarized
case. The distances of the C adatom from the U surface are 0.62Å for the non-spin-
polarized and 0.52Å for the spin-polarized cases. A study of the density-of-states
(DOS) for O and C adsorbed uranium surfaces shows that the hybridization between
U 5f orbitals and the O and C 2p orbitals is weak and the bonding is primarily ionic.
Comparisons with published results will be presented.

1This work is supported by the Chemical Sciences, Geosciences and Biosciences
Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of
Energy and the Welch Foundation, Houston, Texas.

Pratik Dholabhai
University of Texas at Arlington

Date submitted: 23 Nov 2005
Electronic form version 1.4