Structural anomalies at the magnetic and ferroelectric transitions in $\text{RMn}_2\text{O}_5$\textsuperscript{1} B. LORENZ, C.R. DELA CRUZ, F. YEN, Y.Y. SUN, C.W. CHU\textsuperscript{2}, Dept. of Physics, University of Houston, S. PARK, S-W. CHEONG, Dept. of Physics and Astronomy and RCEM, Rutgers University — Multiferroic $\text{RMn}_2\text{O}_5$ (R=rare earth, Y), have attracted significant attention because of their magneto-electric properties giving rise to complex phase diagrams and novel phenomena such as magnetic control of ferroelectric polarization and giant magneto-dielectric effects. In understanding their ferroelectricity and magneto-electric properties the magneto-elastic lattice distortions at the phase transitions are assumed to play a key role. Such distortions are difficult to detect by x-ray or neutron scattering experiments due to the limited resolution. Employing high-precision capacitance dilatometry, we show the existence of distinct, anisotropic lattice anomalies in $\text{RMn}_2\text{O}_5$ (R=Ho, Tb, Dy) at all magnetic and ferroelectric phase transitions as function of temperature and magnetic fields. These data provide unambiguous evidence for strong magneto-elastic coupling in multiferroic $\text{RMn}_2\text{O}_5$.

\textsuperscript{1}Supported by NSF, DoE, and the State of Texas through TCSUH.
\textsuperscript{2}Also at LBNL, Berkeley and HKUST, Hong Kong

Bernd Lorenz
TCSUH, University of Houston

Date submitted: 24 Nov 2005