Abstract Submitted for the MAR06 Meeting of The American Physical Society

Theory of magnesium silicates with bearing Fe and Al in the lower mantle and the Earth's D" layer¹ FEIWU ZHANG², ARTEM OGANOV³, ETH Zurich — Although iron and aluminum incorporation into Earth's mantle minerals are expected to have important effects, little is known about Fe valence and spin state in such major phases as MgSiO₃ perovskite (Pv, main mineral of the lower mantle) and post-perovskite (PPv, main mineral of the Earth's D" layer). Here, we perform ab initio simulations, indicating that $Fe^{2+} \rightarrow Fe(metal) + Fe^{3+}$ in Pv & PPv. A new detailed microscopic picture of MgSiO₃ Pv & PPv is presented, including the complexity of Fe-Al incorporation, the spin transitions in Fe³⁺ and lack of such in Fe²⁺, and the effects of Fe²⁺, Fe³⁺, Al³⁺ on the stability of PPv. These theory results explain and reconcile the recent diverse experimental results on the iron spin transition in MgSiO₃ and provide basis for future geodynamical and petrological studies of the mantle and the D" layer.

Feiwu Zhang ETH Zurich

Date submitted: 25 Nov 2005 Electronic form version 1.4

¹Acknowledge access to supercomputers at CSCS (Manno) and the HP Superdome of ETH Zurich. Funding by ETH Zurich

²http://olivine.ethz.ch/ feiwu

³http://olivine.ethz.ch/ artem