Effects of triplet pairing amplitudes in hybrid junctions of superconductor, ferromagnet, and normal metal. NA YOUNG LEE, HAN-YONG CHOI, HYEONJIN DOH — We calculate the critical temperature T_c and pairing amplitude of the hybrid junctions of superconductor (S), ferromagnet (F), and normal metal (N) by solving the Usadel equation in the dirty limit. S is a conventional singlet s-wave superconductor like Nb. The interface between S and N is modeled in terms of the interface resistance without the spin flips, while the interface between F and S or F and N is modeled by both the interface resistance and spin flip scatterings, parameterized by, respectively, γ_b and γ_m. The spin flip scatterings induce the triplet pairing components from the singlet component. The T_c of the junction is determined by the critical order parameter, i.e., the singlet pairing component. The γ_b or γ_m changes the T_c of the junctions indirectly by altering the singlet component by modifying the boundary conditions at the interfaces. We calculate the T_c and pairing amplitudes of S/N/F and F/S/F trilayers including γ_b and γ_m and investigate the effects of the triplet pairing components on the T_c and pairing amplitudes of the trilayers.

Na Young Lee

Date submitted: 25 Nov 2005

Electronic form version 1.4