Abstract Submitted for the MAR06 Meeting of The American Physical Society

Magnetic Ferroelectrics Bi, Pb-3d Transition Metal Perovskites AZUMA, KAZUHIDE TAKATA, TAKASHI SAITO, YUICHI SHI-MASAKI MAKAWA, MIKIO TAKANO, Inst. Chem. Res., Kyoto Univ., SEIJI NIITAKA, Mag. Res. Lab., RIKEN, ALEXEI BELIK, ICYS, NIMS, SHINTARO ISHIWATA, Dept. Appl. Phys., Waseda Univ. — Magnetic ferroelectrics attract much attention because of the possible application for the memory device and the fascinating coupling between magnetic and dielectric properties. A classical way to obtain a magnetic ferroelectric is to locate Bi³⁺ or Pb²⁺ions and a magnetic transition metal ion on A and B sites of perovskite structure. The $6s^2$ lone pair and the strong covalent character of Bi(Pb)-O bonds stabilize a noncentrosymmetric distorted structure. For example, $BiFeO_3$ and $BiMnO_3$ are established antiferromagnetic and ferromagnetic ferroelectrics, respectively. We have studied structure, magnetic and electric properties of $BiMO_3$ with M=Cr, Co and Ni and PbVO₃ stabilized by high-pressure synthesis. BiCrO₃ is an antiferromagnetic ferroelectric with BiMnO₃ type structure. BiCoO₃ and PbVO₃ are found to have tetragonal PbTiO₃ type structures with expected polarizations of $\sim 100 \mu C/cm^2$. BiNiO₃crystallizes in a triclinic structure where disproportionation into Bi^{3+} and Bi^{5+} takes place. We have also succeeded in preparing a designed ferromagnetic ferroelectric double provskite Bi₂NiMnO₆. In this compound, NaCl type ordering of Ni²⁺ (e_q^1) and Mn⁴⁺ (t_{2q}^3) leads to ferromagnetism with $T_C = 140$ K.

> Masaki Azuma Inst. Chem. Res., Kyoto Univ.

Date submitted: 26 Nov 2005

Electronic form version 1.4