Optical Spectroscopy and Photophysics of Single Wall Carbon Nanotubes

LOUIS BRUS, Columbia University

We explore the fundamental nature and dynamics of excited electronic states in SWNT. Psec luminescence and photobleaching dynamics of SWNTs in micellar solution show that non-radiative Auger recombination is extremely fast. At low pH, nanotube surface endoperoxides protonate and introduce holes that quench the luminescence. At higher concentration these holes also bleach the band gap optical absorption. Near infrared two photon luminescence excitation spectra quantitatively reveal the importance of excitons. In order to characterize excited states in both metallic and semiconducting SWNTs at the single-tube level, we detect white-light Rayleigh scattering from individual tubes suspended over an open slit in a substrate. Diagnostic spectra with high signal to noise are obtained in just a few minutes.