Effect of doping and molecular coverage on the I-V characteristics of organic molecules on silicon surfaces WENCHANG LU, N.C. State University, V. MEUNIER, ORNL, S. WANG, Q. ZHAO, J. BERNHOLC, N.C. State University — Quantum transport properties of organic molecules on the silicon (001) surface have been studied by ab initio non-equilibrium Green function calculations in a basis of optimal localized orbitals. Our calculated results provide a qualitative picture and quantitative understanding of the importance of self-consistent screening and broadening of quasi-molecular orbitals under a large bias. Negative Differential Resistance (NDR) is found to be a general feature of organic molecules on Si surfaces [1]. By comparing the I-V characteristics of a monolayer of cyclopentene molecules with that of a single molecule, we show that interactions between the molecules attenuate the NDR, as seen in experiments. We have also investigated the effects of proximal dopant atoms on the NDR in a large unit cell.

Wenchang Lu
N.C. State University

Date submitted: 27 Nov 2005
Electronic form version 1.4