Spin-Orbital Coupling Effects on Magnetoresistance in Organic Materials

YUE WU, ZHIHUA XU, BIN HU, University of Tennessee — We report the studies on magnetoresistance of organic materials based on the light-emitting diode of phosphorescent iridium complex Ir(ppy)$_3$ molecules dispersed in fluorescent poly(N-vinylcarbazole) (PVK). The magnetic field-dependent injection current indicates that the PVK of weak spin-orbital coupling exhibits a significant magnetoresistance while the resistance of Ir(ppy)$_3$ of super-strong spin-orbital coupling shows an independence of magnetic field up to 3000 Gauss. We find that the magnetoresistance from the Ir(ppy)$_3$/PVK composite displays a gradual decrease with increasing the concentration of Ir(ppy)$_3$. The magnetic field-dependent electroluminescence confirms that the dispersed Ir(ppy)$_3$ molecules account for the change of magnetoresistance in the Ir(ppy)$_3$/PVK composite. From the uniform dispersion of Ir(ppy)$_3$ molecules observed from transmission electron microscope, we suggest that the spin-orbital coupling is modified by the interface interaction and consequently varies the magnetoresistance in the Ir(ppy)$_3$/PVK composite.

Bin Hu
University of Tennessee

Date submitted: 28 Nov 2005

Electronic form version 1.4