Chiral Heterorecognition of Organic Molecules and Inorganic Surfaces

THOMAS GREBER, RICHARD SCHILLINGER, JOACHIM WIDER, Physik Institut der Universitat Zurich, Switzerland, ZELIKO SLJIVANCANIN, IR-RMA, Ecole Polytechnique Lausanne, Switzerland, BJORK HAMMER, Department of Physics and Astronomy and iNANO, University of Aarhus, Denmark — Atomic kinks on surfaces are chiral and may thus be used to distinguish left-handed from right-handed molecules. Two distinct non-mirror-symmetric conformations of D- and L-cysteine were found after adsorption on Au(17 11 9). This demonstrates chiral heterorecognition, i.e. enantioselectivity of S-kinks on vicinal Au(111). The structures as determined by angle scanned X-ray photoelectron diffraction (XPD) agree well with those from density functional theory (DFT) calculations. The calculations predict adsorption energies of \(\approx 2 \) eV where D-cysteine binds 140 meV stronger than L-cysteine. The classical three point contact model for molecular recognition fails to explain these findings.

Thomas Greber
Physik Institut Universitat Zurich

Date submitted: 28 Nov 2005

Electronic form version 1.4