One-to-one Correspondence of the Normalization and Coulomb Hole Sum Rules for Approximate Wave Functions.1 XIAO-YIN PAN, VIRAHT SAHNI, LOU MASSA, The Graduate School, CUNY — For approximate wave functions, we prove the theorem that there is a one-to-one correspondence between the constraints of normalization, and of the Fermi-Coulomb and Coulomb hole sum rules. This correspondence is surprising because normalization depends on the probability of finding an electron at some position, whereas the Fermi-Coulomb/Coulomb hole sum rules depend on the probability of two electrons staying apart due to Pauli-Coulomb/Coulomb correlations. We demonstrate the theorem by example using wave function functionals2. The significance of the theorem for DFT lies in the fact that the extensively employed LYP correlation energy functional3 is based on a wave function (that of Colle-Salvetti4) which satisfies the Coulomb hole sum rule only approximately, and that wave function is therefore not normalized.

1 Supported by RF CUNY

Viraht Sahni
The Graduate School, CUNY

Date submitted: 21 Dec 2005