Abstract Submitted for the MAR06 Meeting of The American Physical Society

Magneto-transport in Fe_3O_4/Nb :SrTiO₃ schottky junction diode DARSHAN KUNDALIYA, S.B. OGALE, J. HIGGINS, T. VENKATESAN, Center for Superconductivity Research, University of Maryland, College Park, MD-20742, L.F. FU, N.D. BROWNING, LBNL, NCEM, One Cyclotron Road, Berkeley, CA-94720 — Among the half metallic ferromagnets, Fe₃O₄ is of particular interest because of its half metallicity, high curie temperature and a charge ordering transition at 120K (popularly known as Verwey transition (T_V)). These materials are also expected to show 100% spin polarization. In view of these fascinating properties, we studied temperature dependent transport, magnetic, structural and interface characteristics of epitaxial schottky junctions between Fe_3O_4 and Nb:SrTiO₃ (with different Nb concentrations). Epitaxial thin films of Fe₃O₄ were grown on Nb:SrTiO₃ substrates by PLD technique. The films show epitaxial growth along (100)-axis direction. We also performed HR-TEM and EELS study to ensure a better quality interface. In the temperature range above T_V , 300K-130K, the I-V characteristic shifts towards higher forward bias voltage upon lowering temperature. On further decreasing temperature (below T_V), the trend is reversed. Junction parameters such as the Schottky barrier height (ϕ_B) and ideality factor (η) are extracted using thermionic emission theory at all temperatures. These parameters show interesting and systematic trends above and below T_V . From the magnetic field dependence of non linear I-V characteristics data, a spin polarization of $\sim 80\%$ is estimated for the magnetite electrode at T_V .

Darshan Kundaliya

Date submitted: 28 Nov 2005

Electronic form version 1.4