Local Electronic and Spin Structure of GdBaCo$_2$O$_{5.5}$ from X-ray Absorption Spectroscopy

KYLE SHEN, DAVID HAWTHORN, DARREN PEETS, ILYA ELFIMOV, GEORGE SAWATZKY, University of British Columbia, ALEXEY TASKIN, YOICHI ANDO, CRIEPI, Japan — The family of RBaCo$_2$O$_{5+\delta}$ cobaltates is known to exhibit a rich variety of magnetic behavior as a function of oxygen content and temperature. We present x-ray absorption measurements on detwinned single crystals of GdBaCo$_2$O$_{5.5}$, where the structure is comprised of alternating rows of CoO$_6$ octahedra and CoO$_5$ pyramids. GdBaCo$_2$O$_{5.5}$ exhibits successive paramagnetic, ferromagnetic, and antiferromagnetic phases, and also exhibits a “spin blockade” effect upon doping. These unusual behaviors are believed to stem from the nearly degenerate spin states of the Co$^{3+}$ ions which can potentially vary from low (S=0), intermediate (S=1), to high (S=2) spin states. Our recent x-ray absorption measurements provide the first measurements of the local electronic and spin states. Measurements of the temperature and polarization dependence of the x-ray absorption at the oxygen K edge clearly indicate an abrupt change in the orbital populations at the metal-insulator transition at T \sim 360 K. We combine our spectroscopic measurements with atomic multiplet and LSDA+U calculations to provide a first insight into the true nature of the spin state transitions which govern the unusually rich magnetic properties of the RBaCo$_2$O$_{5+\delta}$ cobaltates.

Kyle Shen
University of British Columbia

Date submitted: 28 Nov 2005

Electronic form version 1.4