Abstract Submitted for the MAR06 Meeting of The American Physical Society

Defect-induced Ferromagnetism in Insulators without Magnetic Ions: The Case of Cation Vacancy in CaO^1 JORGE OSORIO-GUILLEN, S. LANY, S.V. BARABASH, ALEX ZUNGER, National Renewable Energy Laboratory — We have investigated by means of first-principle supercell calculations the posibility of ferromagnetism being induced by cation vacancies in non-magnetic oxides in four steps: (i) A single neutral Ca vacancy V_{Ca}^0 is found to have a magnetic moment of 1.9 μ_B due to its electronic configuration: $(a_1^2 t_{1+}^3 e_{+}^2) t_{1-}^p e_{-}^q$ where, the e_{-} state is partially occupied ($q \approx 0.5$), leading to a transfer of some hole density to the t_{1-} valence band states ($p \approx 2.5$). (ii) The ferromagnetic interaction between two vacancies is found to extend only to four neighbors or less. (iii) To achieve magnetic percolation on a fcc lattice with such an interaction range one needs a minimum vacancy concentration of 1.8×10^{21} cm⁻³ (4.9 %). However, (*iv*) due to the high vacancy formation energy even under the most favorable growth conditions one can not obtain at equilibrium more than 10^{18} cm⁻³ vacancies. Thus, a nonequilibrium vacancy-enhancement factor of 10^3 is needed to achieve ferromagnetism in such systems. Comparison with other non-magnetic oxides will be also discussed.

¹This work was funded by DARPA under NREL contract No. DE-AC36-99GO10337

Jorge Osorio-Guillen National Renewable Energy Laboratory

Date submitted: 29 Nov 2005

Electronic form version 1.4