Abstract Submitted for the MAR06 Meeting of The American Physical Society

Magnetic properties of La_{2/3}Sr_{1/3}MnO₃/Pr_{2/3}Ca_{1/3}MnO₃ superlattices DARIO NIEBIESKIKWIAT, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, LUIS HUESO, Department of Materials Science, University of Cambridge, Cambridge CB2 3QZ, UK, MYRON SALA-MON, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, NEIL MATHUR, Department of Materials Science, University of Cambridge, Cambridge CB2 3QZ, UK — We present a magnetization study of ferromagnetic/antiferromagnetic (FM/AFM) manganite superlattices, grown by pulsed laser deposition on SrTiO₃ substrates. The FM layers are 15-nm-thick La_{2/3}Sr_{1/3}MnO₃ (LSMO) sheets and the AFM layers were made of Pr_{2/3}Ca_{1/3}MnO₃ (PCMO), with variable thickness t_A between 0 and 7.6 nm. Although all our multilayers exhibit a PM-FM transition of the LSMO layers at $T_C \sim 340$ K, only for $t_A=0$ do we observe a FM moment M_0 close to the expected saturation for the 1/3 doping. As soon as the AFM layers are added ($t_A = 0.8 \text{nm}$) M_0 decreases, related to the introduction of the FM/AFM interfaces. The lack of exchange bias would indicate that the reduction of the FM moment is due to the appearance of a magnetically dead layer in the LSMO close to the interface with the AFM volume. Upon a further increase of t_A , the FM moment increases again and develops a peak at $t_A \sim 3.5$ nm. We explain this behavior in terms of the accommodation of nanometric FM droplets in the PCMO layers.

Dario Niebieskikwiat Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL 61801

Date submitted: 29 Nov 2005 Electronic form version 1.4