Low Energy Inelastic Helium Atom Scattering from Monolayers

L.W. BRUCH, Department of Physics, University of Wisconsin-Madison, F.Y. HANSEN, Department of Chemistry, Technical University of Denmark — A time-dependent wave packet calculation for inelastic low energy helium atom scattering (HAS) by a physisorbed monolayer\(^1\) is extended to much longer propagation times by adding an absorbing potential at large distances. This enables a treatment of transiently trapped helium atoms for He/Xe/Pt(111) and shows that the lifetimes are in the range 10-30 ps. The scattering of the wave packet is essentially complete when the propagation is terminated. Systematic trends for an experiment on a Xe/Pt(111) monolayer\(^2\) are discussed. The remarkable inelastic intensity for the shear horizontal (SH) monolayer branch is predicted to be strongly enhanced for incident energies in the range 4 to 6 meV, somewhat below the 8.2 meV energy used in most of that experiment.


L. W. Bruch
University of Wisconsin-Madison

Date submitted: 29 Nov 2005