Abstract Submitted for the MAR06 Meeting of The American Physical Society

Spin Interference Effect in a Square Loop Array including the Rashba and Dresselhaus Terms¹ T. KOGA², H. OKUTANI, GSIST, Hokkaido University and ²CREST, JST, Y. SEKINE, ³NTT Basic Research Laboratories, NTT Corporation, J. NITTA^{2,3}, GSEng., Tohoku University — The effect of electron wave interference to the electric conductivity (σ), including the effect of spin degree of freedom, is investigated through nanolithographically defined square (and other) loop array structures fabricated on $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As$ quantum wells (QW). In this experiment, we measure σ 's of QWs as a function of magnetic field B (**B** \perp QW plane). These samples had a gate electrode covering the entire loop array structures, where a gate voltage V_g was applied between the metal gate electrode and the QW. We note that V_g controls both the carrier density and the Rashba and Dresselhaus spin-orbit terms within the QWs. It turned out that the magnetoconductance $\sigma(B)$ oscillates as a function of B with a period corresponding to h/2e, which is denoted as the AAS oscillation. We found that the amplitude of the AAS oscillation in this system also oscillated as a function of V_q , which is called as a "spin interference" effect. We investigated this effect, which is also in close relation to the "Aharonov-Casher" effect (electric control of the phase of the electronic wave function), in detail including both the Rashba and Dresselhaus spin-orbit terms quantitatively.

¹T.K. acknowledges the Inamori Foundation and the Murata Science Foundation for financial support.

Takaaki Koga Hokkaido University

Date submitted: 06 Dec 2005

Electronic form version 1.4