Entropy and susceptibility of “stuffed” spin ice – $\text{Ho}_2(\text{Ho}_x\text{Ti}_{2-x})\text{O}_{7-x/2}$

B.G. UELAND, R.S. FREITAS, P. SCHIFFER, Department of Physics and Materials Research Institute, Pennsylvania State University, G.C. LAU, B.D. MUEGGE, E.L. DUNCAN, R.J. CAVA, Department of Chemistry, Princeton University — The spin ice material $\text{Ho}_2\text{Ti}_2\text{O}_7$ has been studied extensively due to its apparent residual ground state entropy, which is similar to that seen in water ice. This material has a pyrochlore structure in which the Ho^{3+} and Ti^{4+} cations form two interpenetrating sets of corner sharing tetrahedra. Here we present thermodynamic measurements on $\text{Ho}_2(\text{Ho}_x\text{Ti}_{2-x})\text{O}_{7-x/2}$, with $0 \leq x \leq 0.67$, where we have replaced some Ti with Ho – effectively stuffing the lattice with more magnetic ions. We find that the zero field magnetic entropy remains essentially unchanged with stuffing. AC susceptibility measurements show the $T = 2$ K peak associated with the spin ice freezing decreases in magnitude with increasing x, indicating that spin freezing has been suppressed. While the residual entropy in $\text{Ho}_2\text{Ti}_2\text{O}_7$ is reduced with the application of a magnetic field, our measurements show that the entropy becomes less sensitive to applied field as x is increased. This work is supported by the NSF.

Benjamin Ueland
Department of Physics and Materials Research Institute
Pennsylvania State University

Date submitted: 29 Nov 2005
Electronic form version 1.4