Abstract Submitted for the MAR06 Meeting of The American Physical Society

Microwave cyclotron resonance of two-dimensional holes in GaAs/AlGaAs quantum wells on (100) substrates HAN ZHU, K. LAI, D. C. TSUI, N. P. ONG, Princeton University, M. MANFRA, L. PFEIFFER, K. WEST, Bell Labs — Cyclotron resonance at microwave frequencies is used to measure the band mass (m_b) of two-dimensional holes (2DHs) in the GaAs/Al_xGa_{1-x}As quantum wells grown on (100) GaAs substrates [1]. The measured m_b shows strong dependences on both the 2DH density (p) and the well width (W). For a fixed W, in the density range $(0.4 \times 10^{11} \text{ to } 1.1 \times 10^{11} \text{ cm}^{-2})$ studied here, m_b increases with p, consistent with previous studies of the 2DHs on the (311)A surface [2]. However, the density dependence is significantly weaker on the (100) surface than that on the (311)A surface for the same well width of 30nm. For a fixed $p = 1.1 \times 10^{11} \text{ cm}^{-2}$, m_b increases from $0.22m_e$ at W = 10nm to 0.54 m_e at W = 20nm, and stays around $0.51m_e$ for W up to 1000nm. With the transport measurement at 0.3K in the dark, the DC scattering time τ_{DC} deduced for $p = 1.1 \times 10^{11} \text{cm}^{-2}$ shows a maximum of 0.6ns at W = 20nm. [1] M. J. Manfra *et al.*, Appl. Phys. Lett. 86, 16 (2005). [2] W. Pan et al., Appl. Phys. Lett. 83, 3519 (2003).

> Han Zhu Princeton University

Date submitted: 28 Nov 2005

Electronic form version 1.4