One-dimensional spin-polarized fermions
ANNA MINGUZZI, Laboratoire de Physique et Modelisation des Milieux Condenses, C.N.R.S., B.P. 166, 38042 Grenoble, France

The fermionic Tonks-Girardeau (FTG) gas is a spin-aligned one-dimensional Fermi gas with infinitely strong attractive zero-range odd-wave interactions. This model describes experiments on ultracold atomic gases subjected to tight quasi-1D waveguides and close to a Feshbach resonance. I will report on the recent investigations of the FTG gas under different trapping conditions (harmonic and ring traps) and in the presence of disorder. In particular I will discuss the pairing properties of this gas, the possibility of metastable current flows and the response to rotation. Finally, for a gas initially under harmonic confinement I will show that during an expansion the momentum distribution undergoes a “dynamical bosonization,” i.e., approaches the one of an ideal Bose gas, without violating the Pauli exclusion principle.