Abstract Submitted for the MAR06 Meeting of The American Physical Society

Stoichiometry Driven Impurity Configurations in Compound Semiconductors¹ G. CHEN, I. MIOTKOWSKI, S. RODRIGUEZ, A. K. RAM-DAS, Purdue University — Precise stoichiometry and departures therefrom in the composition of the tetrahedrally coordinated compound semiconductors allow impurity incorporation in more than one configuration. Ultra-high resolution infrared spectroscopy of CdTe:O at low temperatures reveals a unique pair of sharp lines, a non-degenerate $\nu_1 = 1096.78 \text{ cm}^{-1}$ and a doubly degenerate $\nu_2 = 1108.35 \text{ cm}^{-1}$ at 5 K, associated with the local vibrational modes of O_{Te} in a $(O_{Te} - V_{Cd})$ complex in crystals grown with (CdTe + CdO + excess Te) or $(CdTe + TeO_2)$ which enhances the occurrence of Cd vacancy (V_{Cd}) ; in contrast, a single, triply degenerate sharp line at $\nu_0 = 349.79 \text{ cm}^{-1}$ observed at 5 K occurs in CdTe grown with (CdTe + CdO + excess Cd) in which the appearance of V_{Cd} is inhibited. In the former, oxygen, O_{Te} , is bonded to three nearest neighbor Cd's with a nearby V_{Cd} . The latter corresponds to O_{Te} attached to all the four nearest neighbor Cd cations. With increasing temperature, ν_1 and ν_2 approach each other and behave as a single triply degenerate line at ν_0^* for temperature T \geq T^{*} ~ ~ 300 K; the uniaxial (C_{3v}) symmetry of (O_{Te} $-V_{Cd}$) transforms to T_d symmetry at T^* , acquired due to an increasing rate of bond switching among the four possible $O_{Te} - V_{Cd}$ directions as T approaches T^{*}.

¹Work supported by NSF (DMR 0405082)

A. K. Ramdas Purdue University

Date submitted: 29 Nov 2005

Electronic form version 1.4