3He neutron spin filters for polarized neutron scattering, WANGCHUN CHEN, JULIE BORCHERS, YING CHEN, KEVIN O’DONOVAN, ROSS ERWIN, JEFFREY LYNN, CHARLES MAJKRZAK, SARAH MCKENNEY, THOMAS GENTILE, NIST, Gaithersburg, Maryland — Polarized neutron scattering (PNS) is a powerful tool that probes the magnetic structures in a wide variety of magnetic materials. Polarized 3He gas, produced by optical pumping, can be used to polarize or analyze neutron beams because of the strong spin dependence of the neutron absorption cross section for 3He. Polarized 3He neutron spin filters (NSF) have been of great interest in PNS community due to recent significant improvement of their performance. Here I will discuss successful applications using 3He NSFs in polarized neutron reflectometry (PNR) and triple-axis spectrometry (TAS). In PNR, a 3He NSF in conjunction with a position-sensitive detector allows for efficient polarization analysis of off-specular scattering over a broad range of reciprocal space. In TAS, a 3He NSF in combination with a double focusing pyrolytic graphite monochromator provides greater versatility and higher intensity compared to a Heusler polarizer. Finally I will present the results from patterned magnetically-coupled thin films in PNR and our first “proof-of-principle” experiment in TAS, both of which were performed using 3He NSF(s) at the NIST Center for Neutron Research.