Pressure Driven Liquid-Vapor Phase Transitions

TIANSHI LU, ROMAN SAMULYAK, Computational Science Center, Brookhaven National Laboratory, JAMES GLIMM, Department of Applied Mathematics and Statistics, Stony Brook University — Liquid-vapor phase transitions driven by pressure waves have been studied analytically and numerically. The Stefan problem has been extended to incorporate the compressibility of the vapor phase. Both internal heat conduction and external heat deposition (such as from electrons in tokamak fusion reactors) have been considered. The steady state and the transient waves in the phase transitions have been investigated. A numerical scheme has been developed for the simulation of compressible two-phase flows with phase transitions in the frame of front tracking. Phase boundaries can be created dynamically in regions under critical conditions. The numerical method has been applied to the simulation of boiling and cavitating processes.

Tianshi Lu
Computational Science Center, Brookhaven National Laboratory

Date submitted: 11 Jan 2006