Abstract Submitted
for the MAR06 Meeting of
The American Physical Society

Analytical Solution of Electron Spin Decoherence Through Hyperfine Interaction in a Quantum Dot
CHANGXUE DENG, XUEDONG HU,
State University of New York at Buffalo — We analytically solve the Non-Markovian single electron spin dynamics due to hyperfine interaction with surrounding nuclei in a quantum dot. We use the equation-of-motion method assisted with a large field expansion, and find that virtual nuclear spin flip-flops mediated by the electron contribute significantly to a complete decoherence of transverse electron spin correlation function. Our results show that a 90% nuclear polarization can enhance the electron spin $T_2$ time by almost two orders of magnitude. In the long time limit, the electron spin correlation function has a non-exponential $1/t^2$ decay in the presence of both polarized and unpolarized nuclei.