Low temperature specific heat study on Pr$_{0.88}$LaCe$_{0.12}$CuO$_{4-\delta}$

SHILIANG LI, SONGXUE CHI, PENGCHENG DAI1, Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA, HAIHU WEN, National Laboratory for Superconductivity, Institute of Physics & Center for Condensed Matter Physics, Beijing 100080, China — By annealing the electron-doped Pr$_{0.88}$LaCe$_{0.12}$CuO$_{4-\delta}$ (PLCCO) in vacuum at different temperatures, we have successfully obtained several superconducting PLCCO samples with different T_c. The specific heat of all the samples show a $1/T^2$ behavior below 1K. Above 1K, the low field specific heat can be fitted by $\gamma(H)T + \beta T^3$, where the $\gamma(H)$ is the Sommerfeld coefficient. We present magnetic field dependent data of $\gamma(H)$ for several samples of PLCCO and discuss the evolution of $\gamma(H)$ as PLCCO is tuned from an antiferromagnetically ordered insulator to a $T_c=25$ K superconductor.

1also Condensed Matter Sciences Division and Center for Neutron Scattering, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA