Quantum Relaxation in a Proton Glass

C. ANCONA-TORRES, Y. FENG, T. F. ROSENBAUM, S. R. NAGEL, University of Chicago, E. COURTENS, Université Montpellier II, D. PRICE, University of Orleans, G. REITER, University of Houston — Rb$_{1-x}$(NH$_4$)$_x$H$_2$PO$_4$ is a dipolar structural glass with spatial frustration from the mixture of ferroelectric RDP and antiferroelectric ADP. We measure the ac dielectric susceptibility of Rb$_{0.72}$ADP and Rb$_{0.35}$ADP over 7 decades of frequency for 0.3 < T < 300 K. The relaxation is quantitatively similar for both concentrations at low temperatures, pointing to a local mechanism. We correlate the dielectric susceptibility with the potential energy landscape derived from neutron Compton scattering experiments and solve for the tunneling parameters of the protons, finding correlated rearrangements of the hydrogen network. By analogy with vortex tunneling in high-Tc superconductors, we relate the logarithmic decay of the polarization to the quantum mechanical action.

Carlos Ancona-Torres
University of Chicago

Date submitted: 29 Nov 2005

Electronic form version 1.4