Abstract Submitted for the MAR06 Meeting of The American Physical Society

Ultra-high-Q Microcavities for D_2O Detection¹ ANDREA AR-MANI, DENIZ ARMANI, California Institute of Technology, SEAN SPILLANE, Hewlett-Packard Laboratories, KERRY VAHALA, California Institute of Technology — Ultra high Q optical microcavities ($Q > 10^6$) provide a method for boosting detection sensitivity over conventional detection methods. In a recently published work, the difference between quality factors (Q) of microcavities immersed in D_2O and H_2O was measured and calculated. Due to the higher absorption of H_2O . resonators immersed in H_2O have lower Q's than those immersed in D_2O . This difference in absorption can be exploited to use the resonator as a D_2O detector. The effect on Q is most noticeable at 1300nm, where the Q in water is 10^6 and the Q in D_2O is 10⁷. At longer wavelengths, both $Q(D_2O)$ and $Q(H_2O)$ are further degraded, reducing the efficacy of detection, and at shorter wavelengths, $Q(D_2O)$ and $Q(H_2O)$ become similar, reducing the effect that the presence of D_2O alone has on Q. By monitoring the quality factor, .01 M concentration of D_2O in water (10¹⁷ molecules of D_2O) has been detected; however, the actual sensitivity limit is far better than this concentration value. Detection has also been demonstrated by cyclic introduction and flushing of D_2O_2 , leading to cyclic degradation and improvement of the Q. thereby demonstrating reversible detection.

¹The authors would like to thank the DARPA Center for OptoFluidics for support.

Andrea Martin California Institute of Technology

Date submitted: 01 Dec 2005

Electronic form version 1.4