Abstract Submitted for the MAR06 Meeting of The American Physical Society

Buckling Instability In Bilayer Membranes A. CONCHA, J. MCIVER, P. MELLADO, R.L. LEHENY, Johns Hopkins University — We have analyzed the patterns generated when a stress field is introduced to the inner layer of a cylindrically symmetric bilayer membrane through a combination of analytic calculations, numerical simulations, and experiments. A wrinkled structure forms that we explain in terms of a competition between bending and stretching energies under a suitable geometrical constraint. The wavelength, λ , at the onset of the instability is found theoretically and experimentally to be $\lambda = \pi \sqrt{8B/T_c}$, where T_c is the critical tension of the inner layer marking the onset of the instability, and Bis the bending modulus of the membrane. We have also investigated the formation of pseudo-fractal structures that emerge beyond the onset of the instability. We further explain the existence of defects in the regular pattern as a consequence of multiple metastable states in the effective potential that describes this system.

> Andres Concha Johns Hopkins University

Date submitted: 11 Jan 2006

Electronic form version 1.4