Abstract Submitted for the MAR06 Meeting of The American Physical Society

Superconductivity in $PrRu_4As_{12}$ single crystals W. M. YUHASZ, P. -C. HO, T. A. SAYLES, T. YANAGISAWA, N. A. FREDERICK, M. B. MAPLE, University of California San Diego — Single crystals of the filled skutterudite compound PrRu₄As₁₂ were characterized by magnetization, specific heat, and electrical resistivity measurements. These measurements reveal the occurrence of superconductivity below ~ 2.4 K. The magnetic susceptibility exhibits behavior consistent with a Pr^{3+} ninefold degenerate J = 4 Hund's rule ground state multiplet split in a tetrahedral crystalline electric field with either a nonmagnetic singlet or doublet ground state. Fits to the specific heat data indicate an electronic contribution to the specific heat γ of $\sim 70 \text{ mJ/mol K}^2$ and a Debye temperature Θ_D of $\sim 344 \text{ K}$. The value of $\Delta C/\gamma T_c \approx 1.53$ for PrRu₄As₁₂ is close to the weak-coupling BCS value of 1.43. Electrical resistivity measurements in field were used to determine H_{c2} as a function of temperature from which the zero temperature value of the orbital critical field $^{*}H_{c2}(0)$ was calculated and used to estimate the coherence length ξ_{0} of $PrRu_4As_{12}$. In contrast to $PrRu_4As_{12}$, the compound $PrOs_4As_{12}$ displays two phase transitions at 2.2 K and 2.3 K in zero field, one of which is antiferromagnetic and the nature of the other is yet to be determined. $PrOs_4As_{12}$ also displays heavy fermion behavior with an enhanced electronic specific heat coefficient γ on the order of 200 mJ/mol K² and a $\Theta_{\rm D}$ of only 260 K. This research was supported by the U.S. DOE (No. DE-FG02-04ER46105) and NSF (No. DMR 0335173).

> William Yuhasz University of California San Diego

Date submitted: 05 Jan 2006

Electronic form version 1.4