Niobium doping effects on the ferromagnetism and microstructure of anatase Co: TiO$_2$ films1 SHIXIONG ZHANG, SATISH OGALE, SANKAR DHAR, DARSHAN KUNDALIYA, WEGDAN RAMADAN, JOSHUA HIGGINS, RICHARD GREENE, THIRUMALAI VENKATESAN, Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742-4111., LIANFENG FU, NIGEL BROWNING, Lawrence Berkeley National Laboratory, NCEM, 1 Cyclotron Road, MS 72-150, Berkeley, CA 94720 — Niobium doping is shown to have a significant effect on the ferromagnetism and microstructure of dilutely cobalt-doped anatase TiO$_2$ films. Epitaxial films of anatase TiO$_2$ with 3% Co, with and without 1% niobium doping were grown by pulsed-laser deposition at 875 °C at different oxygen pressures. For growth at 10$^{-5}$Torr Niobium doping suppresses ferromagnetism, while it enhances the same in films grown at 10$^{-4}$Torr. The results of High-resolution Z-contrast Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscopy study reveal uniform surface enrichment of cobalt in the form of Ti$_{1-x-y}$Co$_x$Nb$_y$O$_{2-δ}$g phase, without cobalt metal clusters. The transport and Hall effect results will also be presented and discussed.

1Work Supported under DARPA SpinS program

Shixiong Zhang

Date submitted: 29 Nov 2005

Electronic form version 1.4