MAR06-2005-002929

Abstract for an Invited Paper for the MAR06 Meeting of the American Physical Society

Evolution of superconducting gap and metallic ground state in cuprates from transport

LOUIS TAILLEFER, University of Sherbrooke & Canadian Institute for Advanced Research

We report on fundamental characteristics of the ground state of cuprates in the limit of T=0, for both normal and superconducting states, obtained from transport measurements on high-quality single crystals of YBCO and Tl-2201, as a function of hole concentration. The superconducting gap is extracted from thermal conductivity; it is found to scale with the superconducting transition temperature throughout the overdoped regime, with a gap-to-Tc ratio of 5 [1]. The normal state is accessed by suppressing superconductivity with magnetic fields up to 60 T and is characterized by the limiting behavior of its electrical resistivity; while carrier localization is observed in YBCO at low temperature for carrier concentrations p below 0.1 hole/planar Cu, at p=0.1 and above the material remains highly metallic down to T=0 [2]. This shows that the non-superconducting state of underdoped cuprates, deep in the pseudogap phase, is remarkably similar to that of strongly overdoped cuprates, e.g. at p=0.3. We compare these results with similar measurements on other cuprates and discuss their implication for our understanding of the cuprate phase diagram. [1] In collaboration with: D.G. Hawthorn, S.Y. Li, M. Sutherland, E. Boaknin, R.W. Hill, C. Proust, F. Ronning, M. Tanatar, J. Paglione, D. Peets, R. Liang, D.A. Bonn, W.N. Hardy, and N.N. Kolesnikov. [2] In collaboration with: C. Proust, M. Sutherland, N. Doiron- Leyraud, S.Y. Li, R. Liang, D.A. Bonn, W.N. Hardy, N.E. Hussey, S. Adachi, S. Tajima, J. Levallois, and M. Narbone.