Vortex-Phonon Interaction in the Kosterlitz-Thouless Theory

EVGENY KOZIK, NIKOLAY PROKOF’EV, BORIS SVISTUNOV, University of Massachusetts Amherst — The “canonical” variables of the Kosterlitz-Thouless theory—fields \(\Phi_0(r) \) and \(\phi(r) \), generally believed to stand for vortices and phonons (or their XY equivalents, like spin waves, etc.) turn out to be neither vortices and phonons, nor, strictly speaking, canonical variables. The latter fact explains paradoxes of (i) absence of interaction between \(\Phi_0 \) and \(\phi \), and (ii) non-physical contribution of small vortex pairs to long-range phase correlations. We resolve the paradoxes by explicitly relating \(\Phi_0 \) and \(\phi \) to canonical vortex-pair and phonon variables.