Abstract Submitted for the MAR06 Meeting of The American Physical Society

Substrate-induced strain effects on the transport properties of pulsed laser deposited Nb doped $SrTiO_3$ films.¹ WEGDAN RAMADAN, SATISH OGALE, SANKAR DHAR, SHIXIONG ZHANG, DARSHAN KUN-DALIYA, ISSEI SATOH, THIRUMALAI VENKATESAN, Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742-4111 — Thin films of Nb doped $SrTiO_3(NSTO)$ are grown via pulsed laser deposition (PLD) on LaAlO₃ (LAO, 001), MgAl₂O₄ (MAO, 001), SrTiO₃ (STO, 001), and Y-stabilized $ZrO_2(YSZ, 001)$ substrates. The film growth is examined under various growth conditions. The dependence of film properties on the film-substrate lattice mismatch, film thickness, and substrate temperature is investigated. The electrical transport in NSTO films is shown to exhibit a strong sensitivity to strain, which is suggested to arise from the dependence of carrier mobility on bond distortions/stretching and related changes in phonon modes.

¹Wedgan Ramadan acknowledges support under Fulbright program

Shixiong Zhang

Date submitted: 29 Nov 2005

Electronic form version 1.4