Determination of complex magnetism in a homologous series of compounds.1 R.W. MCCALLUM, Y. JANSSEN, TA. LOGRASSO, K.A. GSCHNEIDNER, JR., V.K. PECHARSKY, B.N. HARMON, Ames Laboratory, Iowa State University, Ames IA 50011 — \(\text{Pr}_{(n+1)(n+2)}\text{Ni}_{n(n-1)+2}\text{Si}_{n(n+1)} \), where \(n = 2, 3, \) and 4, forms a homologous series of hexagonal compounds whose basic structural unit is a trigonal prism of Pr atoms with its axis parallel to the c-axis. Between 100 and 400 K, their dc susceptibility, \(\chi_s \) measured with \(H||c \) and \(H\perp c \) on a single crystal follows a Curie-Weiss law. In all compounds, the component of \(M||c \) orders ferromagnetically with \(T_c \) increases with \(n \). For \(H\perp c \), a peak is observed in the low-field \(M \) vs \(T \) plots below \(T_c \) suggesting antiferromagnetic order. For \(H\perp c \) at 5 K, all three compounds exhibit a metamagnetic transition between 2 T and 3 T. Based on the systematics of the properties of the members of the series, a model for site specific interactions has been developed for comparison with first principles calculations.

1Ames Laboratory is operated for the US Department of Energy by Iowa State University under contract number W-7405-ENG-82.

Ralph McCallum
Ames Laboratory

Date submitted: 12 Jan 2006

Electronic form version 1.4