Abstract Submitted for the MAR06 Meeting of The American Physical Society

Size Dependence of the Static Polarizabilities and Absorption Spectra of Gold Clusters SERDAR OGUT, JUAN CARLOS IDROBO¹, University of Illinois at Chicago, JINLAN WANG, JULIUS JELLINEK², Chemistry Division, Argonne National Laboratory — We present results for static polarizabilities and absorption spectra for ground state structures of Au_n, n = 2 - 14, 20, clusters calculated within static and time-dependent density functional theory. The static polarizabilities of the clusters with less than 14 atoms exhibit even-odd oscillations. The polarizabilities of Au₁₄ and Au₂₀ are noticeably lower. This change in the behavior of static polarizability is correlated with the transition from twodimensional to three- dimensional structures at n = 14. The *d* electrons have a large effect on the optical spectra as they quench the oscillator strengths significantly and are heavily involved in low-energy excitations. The calculated spectra are compared with available experimental data and spectra obtained for Ag_n clusters.³

¹Supported by DOE Grant No. DE-FG02-03ER15488

²Supported by the Office of Basic Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U. S. Department of Energy under Contract No. W-31-109-Eng-38

³J. C. Idrobo, S. Ogut, and J. Jellinek, Phys. Rev. B **72**, 085445 (2005)

Serdar Ogut University of Illinois at Chicago

Date submitted: 05 Jan 2006

Electronic form version 1.4