Size Dependence of the Static Polarizabilities and Absorption Spectra of Gold Clusters

SERDAR OGUT, JUAN CARLOS IDROBO1, University of Illinois at Chicago, JINLAN WANG, JULIUS JELLINEK2, Chemistry Division, Argonne National Laboratory — We present results for static polarizabilities and absorption spectra for ground state structures of Au\textsubscript{n}, \(n = 2 - 14, 20\), clusters calculated within static and time-dependent density functional theory. The static polarizabilities of the clusters with less than 14 atoms exhibit even-odd oscillations. The polarizabilities of Au\textsubscript{14} and Au\textsubscript{20} are noticeably lower. This change in the behavior of static polarizability is correlated with the transition from two-dimensional to three-dimensional structures at \(n = 14\). The \(d\) electrons have a large effect on the optical spectra as they quench the oscillator strengths significantly and are heavily involved in low-energy excitations. The calculated spectra are compared with available experimental data and spectra obtained for Ag\textsubscript{n} clusters.3

1Supported by DOE Grant No. DE-FG02-03ER15488
2Supported by the Office of Basic Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U. S. Department of Energy under Contract No. W-31-109-Eng-38