7Li NMR Study of Magnetic Defects in Heavy Fermion LiV$_2$O$_4$\(^1\)
($n \approx 0.7$ mol\%) of magnetic defects within the normal spinel structure of heavy
fermion LiV$_2$O$_4$ was recently found to have a strong effect on the 7Li NMR at low
temperatures $T < 4.2$ K.(1) The 7Li nuclear magnetization relaxation versus time
after saturation, $M(t)$, changed from a pure exponential in a pure sample with $n = 0.01$ mol\%
to a stretched exponential for $n = 0.7$ mol\%. Here we present a systematic
study of the variations of the 7Li NMR versus n for additional n values from 0.05
to 0.8 mol\%. Non-exponential $M(t)$ recovery was consistently obtained for samples
with $n \geq 0.2$ mol\% and the nuclear spin lattice relaxation rate versus temperature
evolved monotonically with increasing n, consistent with the interpretation in Ref.
(1). In addition, we obtained relaxation data for much shorter times than studied
in Ref. (1), which indicate a previously unknown initial $M(t) \propto \sqrt{t}$ dependence for
all samples with $n \geq 0.5$ mol\%, for times $t < 20$ ms. At present, there exists no
microscopic theory for the influence of magnetic defects on our 7Li NMR results.
Phenomenological models that may help to understand the data will be discussed.

\(^1\)Supported by USDOE under Contract No. W-7405-ENG-82.

X. Zong

Date submitted: 10 Jan 2006

Electronic form version 1.4