Abstract for an Invited Paper
for the MAR06 Meeting of
the American Physical Society

Scanning tunneling spectroscopy studies of Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ from the strongly underdoped to strongly overdoped regime
JAMES SLEZAK, Department of Physics, Cornell University

Using atomically resolved scanning tunneling microscopy (STS), we investigate the electronic structure Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ across a range of doping levels from $x \sim 0.1$ up to as high as ~ 0.23, with significant changes in electronic structure observed above $p \sim 0.21$. New sample preparation processes [1] were used to produce heavily overdoped crystals suitable for the imaging of various forms of electronic heterogeneity. The evolution of the gap map $\Delta(r)$, coherence peak height map $A(r)$, the inelastic tunneling signatures $\omega(r)$, and the quasiparticle interference LDOS modulations, as well as their interrelations across this range of doping levels, will be presented.

Additional authors: J. Lee, M. Wang, Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, U.S.A; K. Fujita, Department of Advanced Materials Science, University of Tokyo, Tokyo 113-0033, Japan; H. Eisaki, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568; S. Uchida, Department of Physics, University of Tokyo, Tokyo 113-0033; and J. C. Davis, Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University.