Breathing oscillations accompanying Bloch oscillations of wavepackets in periodic potentials

1 MIGUEL PRUNEDA, UC Berkeley, IVO SOUZA, UC Berkeley — Using a 1D tight-binding model, we study the evolution of a well-localized wavepacket of Bloch states under an applied electric field. We apply a novel algorithm 2 for solving numerically the equations of motion which does not rely on the single-band approximation and can thus be used to explore interband Zener tunneling effects. In addition to the well-known Bloch oscillations of the center of the packet, we show that as the waveform moves in k-space, its real-space width varies in response to the change in the local quantum metric, 3 \(g(k) \), of the underlying Bloch states. A generalized uncertainty relation is obtained between the spread in position and in crystal momentum of a wavepacket. It differs from the usual position/momentum uncertainty relation because of the interband matrix elements of the position operator in the crystal-momentum representation, which introduce a correction in terms of \(g(k) \).

1 Marie Curie OIF programme