Dielectric Relaxation of CaCu$_3$Ti$_4$O$_{12}$ synthesized from a pyrolysis method1 JIANJUN LIU, W. N. MEI, Department of Physics, University of Nebraska at Omaha, Omaha, Nebraska 68182-0266, R. W. SMITH, Department of Chemistry, University of Nebraska at Omaha, Omaha, Nebraska 68182-0109, J. R. HARDY, Department of Physics and Center for Electro-Optics, University of Nebraska, Lincoln, Nebraska 68588-0111 — Giant dielectric constant material CaCu$_3$Ti$_4$O$_{12}$ has been synthesized by using a pyrolysis method. A stable solution was made by dissolving calcium nitrate, copper nitrate, and titanium isopropoxide in 2-methoxyethanol; the solution was then heated at 500 and 700 °C for 2 hours to obtain a pure phase of CaCu$_3$Ti$_4$O$_{12}$. The frequency and temperature dependences of dielectric permittivity were examined in the ranges of 10^{-1}~10^6 Hz and -150~200 °C. We found that the dielectric properties of the sample were the same as those made from solid state reaction. Specifically, there is a Debye-like relaxation at low temperature and its giant dielectric constant about 11000 is independent of the temperature and frequency over a wide range.

1This work was supported by the Nebraska Research Initiative and the U.S. Army Research Office under grant No. DAAD 19-02-1-0099.