Filamin cross-linkers as rheology regulators in biopolymer networks

BRIAN DIDONNA, University of Minnesota, ALEX LEVINE, University of California, Los Angeles — We report on the nonlinear mechanical properties of a statistically homogeneous, isotropic semiflexible network cross-linked by polymers containing numerous small unfolding domains. This model captures the main mechanical features of F-actin networks cross-linked by filamin proteins, which contain twenty-four such Ig-domains that may unfold under applied strain. We show that under sufficiently high strain the network spontaneously organizes itself so that an appreciable fraction of the filamin cross-linkers are at the threshold of domain unfolding. We discuss via a simple model the cause of this network organization. We also discuss how observation of this critical state validates a mechanism proposed by Crocker et al. to explain the weak power law dependence of the measured strain modulus as observed in intracellular microrheology experiments.

Brian DiDonna
University of Minnesota

Date submitted: 29 Nov 2005

Electronic form version 1.4